Jump to main content
Jump to site search

Issue 2, 2014
Previous Article Next Article

The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

Author affiliations

Abstract

In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal–organic framework, namely Co3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry's constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe–Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe–Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions.

Graphical abstract: The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Aug 2013, accepted on 15 Oct 2013 and first published on 16 Oct 2013


Article type: Edge Article
DOI: 10.1039/C3SC52348A
Citation: Chem. Sci., 2014,5, 620-624
  •   Request permissions

    The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    H. Wang, K. Yao, Z. Zhang, J. Jagiello, Q. Gong, Y. Han and J. Li, Chem. Sci., 2014, 5, 620
    DOI: 10.1039/C3SC52348A

Search articles by author

Spotlight

Advertisements