Issue 18, 2014

A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells

Abstract

In this paper we report a simple and effective approach towards improving the performance of molecular bulk heterojunction (BHJ) photovoltaics through incorporation of a new, nonvolatile processing additive; (3-chloropropyl)trimethoxysilane (CP3MS). A small amount of the additive CP3MS combined with post-annealing treatment significantly enhanced the power conversion efficiency (PCE) of dialkylated diketopyrrolopyrrole chromophore (SMDPPEH)-based molecular BHJ solar cells. The PCE increased from 2.75% for a device prepared without the additive or annealing to 4.55% for a device containing 0.1% CP3MS that had been subjected to post-annealing treatment at 100 °C for 10 min. CP3MS performed an interesting dual function when incorporated as an additive in molecular BHJ devices. The first was that it controlled the morphology: the addition of 0.1% CP3MS to the SMDPPEH:PC61BM blend was sufficient to improve the film's crystallinity and morphology. The second function was the spontaneous migration of the CP3MS molecules from the bulk to the interface between the active layer and the Al cathode, forming an ultrathin interlayer that acted as a buffer layer suppressing charge recombination and enhancing charge transport at the interface. Analyses using atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, together with examinations of device performance, confirmed the dual-functional nature of CP3MS as an additive. CP3MS also showed its promising ability to enhance the performance of different blend systems. The performance of benzodithiophene (BDT)-based molecular solar cells enhanced from 3.05% without additive to 3.8% with the incorporation of 0.1% CP3MS.

Graphical abstract: A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2013
Accepted
06 Dec 2013
First published
09 Dec 2013

RSC Adv., 2014,4, 9401-9411

A dual-functional additive improves the performance of molecular bulk heterojunction photovoltaic cells

M. E. Farahat, H. Wei, M. A. Ibrahem, K. M. Boopathi, K. Wei and C. Chu, RSC Adv., 2014, 4, 9401 DOI: 10.1039/C3RA46884D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements