Issue 9, 2014

Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics

Abstract

Monomers structurally resembling lignin were prepared by reacting 4-hydroxybenzaldehyde, vanillin, syringaldehyde, (each bio-available) or ethylvanillin (synthetic) with dibromoethane, yielding dialdehydes CHO–Ar–OCH2CH2O–Ar–CHO. Condensation copolymerization with tetraols catalyzed by para-toluene sulfonic acid yielded polyacetal ethers with cyclic acetals in the case of di-trimethylolpropane (di-TMP) and spirocyclic acetals in the case of pentaerythritol (PTOL). Number average molecular weights (Mn) were in the range of 10 600 to 22 200, although the insolubility of those polymers based on 4-hydroxybenzaldehyde precluded this measurement. The polymers are thermally robust and exhibit 5% mass loss via thermogravimetric analysis in the range of 307–349 °C. Those copolymers based on PTOL displayed glass transition (Tg) temperatures (108–152 °C) at least 40 °C higher than their di-TMP analogues (68–98 °C), highlighting the added rigidity conferred by spirocyclic acetals versus cyclic acetals. Preliminary degradation studies were conducted in dimethyl sulfoxide with 0.5% added aqueous HCl (concentrated or 2 M). Dynamic light scattering confirmed the facile hydrolysis of the polymers. Generally, polymer degradation was faster with a higher acid concentration and copolymers from the PTOL tetraol were more resistant to hydrolysis than those from the di-TMP tetraol.

Graphical abstract: Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2014
Accepted
21 Feb 2014
First published
25 Feb 2014

Polym. Chem., 2014,5, 3214-3221

Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics

A. G. Pemba, M. Rostagno, T. A. Lee and S. A. Miller, Polym. Chem., 2014, 5, 3214 DOI: 10.1039/C4PY00178H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements