Issue 7, 2014

Quantitative cascade energy transfer in semiconductor thin films

Abstract

In this contribution we report the photophysical study of three organic blend systems comprising [60]PCBM along with different combinations of five extended semiconducting arylacetylenes, i.e. p-[(2-{[m,p-didodecyloxyphenyl]ethynyl}-7-fluorenyl)ethynyl]benzonitrile, 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3-benzothiadiazole, 9,10-bis-[(m,m-bis{[m,m-bis-(hexyloxy)phenyl]ethynyl}phenyl)ethynyl]-anthracene, pseudo-p-[(10-{[m,p-bis-(hexyloxy)phenyl]ethynyl}-9-anthryl[2.2]paracyclophane, and oligo{2,5-bis(hexyloxy)[1,4- phenylene ethynylene]-alt-[9,10-anthraceneethynylene]}, and one semiconducting arylvinylene, i.e. 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene, that evidenced an efficient quantitative energy transfer from the hypsochromic to the bathochromic species (the potential efficient charge-donor components), useful to extend the collection of sunlight. An interesting emission enhancement in thin films has been observed only for the arylvinylene derivative.

Graphical abstract: Quantitative cascade energy transfer in semiconductor thin films

Article information

Article type
Paper
Submitted
01 Mar 2014
Accepted
08 Apr 2014
First published
09 Apr 2014

Photochem. Photobiol. Sci., 2014,13, 1031-1038

Author version available

Quantitative cascade energy transfer in semiconductor thin films

R. Flamini, A. Marrocchi and A. Spalletti, Photochem. Photobiol. Sci., 2014, 13, 1031 DOI: 10.1039/C4PP00071D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements