Issue 12, 2014

A density functional study of chiral phosphoric acid-catalyzed direct arylation of trifluoromethyl ketone and diarylation of methyl ketone: reaction mechanism and the important role of the CF3 group

Abstract

The detailed mechanism of the chiral phosphoric acid-catalyzed diarylation reaction between acetophenone and indole has been investigated by DFT methods and compared with that of the reaction between 2,2,2-trifluoroacetophenone and indole. The calculated results confirm our previous hypothesis that the CF3 group in the ketone plays a perfect double role in activating the substrate and stabilizing the single arylation product of tertiary alcohol. It is also demonstrated that the different ratio of the F-substitution in the CH3 group of methyl ketone (CH3−nFn, n = 0, 1, 2, 3) affects the activation energy of the key dehydration step for the proposed diarylation process differently, and determines whether the subsequent re-arylation proceeds or is being suppressed. The computational prediction that the prohibitive barriers for CF3 and CHF2 ketones in the rate-determining dehydration step for the diarylation process could be overcome at higher reaction temperature has been validated by our additional experiments at 80 °C. Furthermore, the origin of the high enantioselectivity of the chiral phosphoric acid-catalyzed single arylation of trifluoromethyl ketone has been studied with the two-layer ONIOM method. The experimentally observed enantiomeric excess can be successfully rationalized.

Graphical abstract: A density functional study of chiral phosphoric acid-catalyzed direct arylation of trifluoromethyl ketone and diarylation of methyl ketone: reaction mechanism and the important role of the CF3 group

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2013
Accepted
21 Jan 2014
First published
22 Jan 2014

Org. Biomol. Chem., 2014,12, 1908-1918

A density functional study of chiral phosphoric acid-catalyzed direct arylation of trifluoromethyl ketone and diarylation of methyl ketone: reaction mechanism and the important role of the CF3 group

A. Fu, W. Meng, H. Li, J. Nie and J. Ma, Org. Biomol. Chem., 2014, 12, 1908 DOI: 10.1039/C3OB42157K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements