Issue 13, 2014

Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings

Abstract

We present a facile method for producing anti-fogging (AF) and anti-reflection (AR) coating functionalized photoanodes via one-step SiO2 nanoparticle coating for high performance solid state dye-sensitized solar cells (ssDSSCs). The AF and AR coating functionalized photoanodes are prepared by spin-coating of partially aggregated SiO2 colloidal solution. Poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), prepared via free radical polymerization, is used as a solid electrolyte in I2-free ssDSSCs. We systematically investigate the enhanced light harvesting characteristics of AF and AR coating functionalized photoanode-based ssDSSCs by measuring UV-visible spectroscopy, incident photon-to-electron conversion efficiency (IPCE) curves under fogging conditions. Compared with conventional photoanode based ssDSSCs, the AF and AR coating functionalized photoanodes substantially suppress fogging and reduce reflection, leading to significantly enhanced light harvesting, especially under fogging conditions. ssDSSCs made of AF and AR coating functionalized photoanodes exhibit an improved photovoltaic efficiency of 6.0% and 5.9% under non-fogging and fogging conditions, respectively, and retain their device efficiencies for at least 20 days, which is a significant improvement of ssDSSCs with conventional photoanodes (4.7% and 1.9% under non-fogging and fogging conditions, respectively). We believe that AF and AR functionalization via one-step SiO2 colloidal coating is a promising method for enhancing light harvesting properties in various solar energy conversion applications.

Graphical abstract: Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings

Supplementary files

Article information

Article type
Paper
Submitted
19 Feb 2014
Accepted
16 Apr 2014
First published
18 Apr 2014

Nanoscale, 2014,6, 7362-7368

Author version available

Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings

J. T. Park, J. H. Kim and D. Lee, Nanoscale, 2014, 6, 7362 DOI: 10.1039/C4NR00919C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements