Jump to main content
Jump to site search

Issue 14, 2014
Previous Article Next Article

Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots

Author affiliations

Abstract

Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic “hot-spots” with impressive electric field enhancement, which greatly promotes plasmon–matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability.

Graphical abstract: Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Mar 2014, accepted on 07 May 2014 and first published on 09 May 2014


Article type: Paper
DOI: 10.1039/C4NR01645A
Author version available: Download Author version (PDF)
Citation: Nanoscale, 2014,6, 8199-8207
  •   Request permissions

    Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots

    F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee and W. Shih, Nanoscale, 2014, 6, 8199
    DOI: 10.1039/C4NR01645A

Search articles by author

Spotlight

Advertisements