Issue 9, 2014

Structure-based virtual screening of novel, high-affinity BRD4 inhibitors

Abstract

Bromodomains (BRDs) are a diverse family of evolutionarily conserved protein-interaction modules. Among various members of the bromodomain and extra terminal domain family, BRD4 is found to be an important target for many diseases such as cancer, acute myeloid leukemia, multiple myeloma, Burkitt's lymphoma, etc. Therefore, in this study an attempt has been made to screen compounds from NCI Diversity, Drug Bank and Toslab Databases targeting the Kac binding site of BRD4 using molecular docking, molecular dynamics simulations, MM-PB/GBSA binding free energy calculations and steered molecular dynamics simulations. Using virtual screening and docking, we have identified 11 inhibitors. These new inhibitors exhibit binding energy values higher than that of the (+)JQ1 inhibitor which is effective against BRD4. However, due to the toxicity of (+)JQ1, the designing of new inhibitors becomes significantly important. Thus, these new 11 ligands were systematically analyzed using other computational investigations. Results reveal that the compounds ZINC01411240, ZINC19632618 and ZINC04818522 could be potential drug candidates for targeting BRD4. It can also be seen from the results that there is a linear relationship between the results obtained from the SMD simulation and free energy obtained from the MM-PBSA/GBSA approach. This study clearly illustrates that the steered molecular dynamics can be effectively used for the design of new inhibitors.

Graphical abstract: Structure-based virtual screening of novel, high-affinity BRD4 inhibitors

Article information

Article type
Paper
Submitted
17 Apr 2014
Accepted
19 Jun 2014
First published
19 Jun 2014

Mol. BioSyst., 2014,10, 2384-2397

Structure-based virtual screening of novel, high-affinity BRD4 inhibitors

C. Muvva, E. R. A. Singam, S. S. Raman and V. Subramanian, Mol. BioSyst., 2014, 10, 2384 DOI: 10.1039/C4MB00243A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements