Jump to main content
Jump to site search

Volume 176, 2014
Previous Article Next Article

Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives

Author affiliations

Abstract

Triboelectrification is one of the most common effects in our daily life, but it is usually taken as a negative effect with very limited positive applications. Here, we invented a triboelectric nanogenerator (TENG) based on organic materials that is used to convert mechanical energy into electricity. The TENG is based on the conjunction of triboelectrification and electrostatic induction, and it utilizes the most common materials available in our daily life, such as papers, fabrics, PTFE, PDMS, Al, PVC etc. In this short review, we first introduce the four most fundamental modes of TENG, based on which a range of applications have been demonstrated. The area power density reaches 1200 W m−2, volume density reaches 490 kW m−3, and an energy conversion efficiency of ∼50–85% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available in our daily life, such as human motion, walking, vibration, mechanical triggering, rotation energy, wind, a moving automobile, flowing water, rain drops, tide and ocean waves. Therefore, it is a new paradigm for energy harvesting. Furthermore, TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement. After a summary of TENG for micro-scale energy harvesting, mega-scale energy harvesting, and self-powered systems, we will present a set of questions that need to be discussed and explored for applications of the TENG. Lastly, since the energy conversion efficiencies for each mode can be different although the materials are the same, depending on the triggering conditions and design geometry. But one common factor that determines the performance of all the TENGs is the charge density on the two surfaces, the saturation value of which may independent of the triggering configurations of the TENG. Therefore, the triboelectric charge density or the relative charge density in reference to a standard material (such as polytetrafluoroethylene (PTFE)) can be taken as a measuring matrix for characterizing the performance of the material for the TENG.

Back to tab navigation

Publication details

The article was received on 17 Aug 2014, accepted on 08 Sep 2014 and first published on 08 Sep 2014


Article type: Perspective
DOI: 10.1039/C4FD00159A
Author version available: Download Author version (PDF)
Citation: Faraday Discuss., 2014,176, 447-458
  •   Request permissions

    Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives

    Z. L. Wang, Faraday Discuss., 2014, 176, 447
    DOI: 10.1039/C4FD00159A

Search articles by author

Spotlight

Advertisements