Issue 6, 2014

Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide

Abstract

High-performance, low-cost, safe and environmentally friendly batteries are important for portable electronics and electric vehicles. Here, we synthesized NiAlCo-layered double hydroxide (LDH) nanoplates attached to few-walled carbon nanotubes (NiAlCo LDH/CNT) as the cathode material of a rechargeable NiZn battery in aqueous alkaline electrolytes. The α-phase nickel hydroxide with ultrathin morphology and strong coupling to nanotubes afforded a cathode with a high capacity of ∼354 mA h g−1 and ∼278 mA h g−1 at current densities of 6.7 A g−1 and 66.7 A g−1, respectively. Al and Co co-doping is unique for stabilizing α-phase nickel hydroxide with only a small capacity loss of ∼6% over 2000 charge and discharge cycles at 66.7 A g−1. Rechargeable ultrafast NiZn batteries with NiAlCo LDH/CNT cathode and a zinc anode can deliver a cell voltage of ∼1.75 V, energy density of ∼274 W h kg−1 and power density of ∼16 kW kg−1 (based on active materials) with a charging time of <1 minute. The results open the possibility of ultrafast and safe batteries with high energy density.

Graphical abstract: Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2014
Accepted
21 Mar 2014
First published
21 Mar 2014

Energy Environ. Sci., 2014,7, 2025-2032

Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide

M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou, J. Feng, H. Wang, Y. Liang, Z. Fan, J. Liu and H. Dai, Energy Environ. Sci., 2014, 7, 2025 DOI: 10.1039/C4EE00317A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements