Issue 6, 2014

Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor

Abstract

Indene-C60 bisadduct (ICBA) is used as an electron-cascade acceptor material in poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7):[6,6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) blend to fabricate ternary blend polymer solar cells (PSCs). Due to higher lowest unoccupied molecular orbital (LUMO) energy levels of ICBA relative to PC71BM, the open circuit voltage (VOC) increases with the addition of ICBA. ICBA plays a bridging role between PTB7 and PC71BM, thus providing more routes for charge transfer at the donor/acceptor (D/A) interface. When the ICBA content is much smaller than the PC71BM content, the morphology of the ternary blend active layer is similar to that of the PTB7:PC71BM blend, which guarantees suitable phase separation and efficient charge transport. Ternary blend devices with 15% ICBA content exhibit an average power conversion efficiency (PCE) of 8.13%, higher than that (7.23%) of the PTB7:PC71BM binary blend. Without any further device work (such as interlayer, invert structure and tandem cells), the ternary blend PSCs exhibit PCEs as high as 8.24%, which is the highest reported for ternary blend PSCs and ICBA-related PSCs.

Graphical abstract: Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor

Article information

Article type
Paper
Submitted
30 Dec 2013
Accepted
17 Mar 2014
First published
17 Mar 2014

Energy Environ. Sci., 2014,7, 2005-2011

Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor

P. Cheng, Y. Li and X. Zhan, Energy Environ. Sci., 2014, 7, 2005 DOI: 10.1039/C3EE44202K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements