Jump to main content
Jump to site search

Issue 44, 2014
Previous Article Next Article

Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films

Author affiliations

Abstract

Thin films of sodium and potassium oxides have for the first time been deposited using atomic layer deposition. Sodium and potassium complexes of tert-butanol, trimethylsilanol and hexamethyldisilazide have been evaluated as precursors by characterising their thermal properties as well as tested in applications for thin film depositions. Out of these, sodium and potassium tert-butoxide and sodium trimethylsilanolate and hexamethyldisilazide were further tested as precursors together with the Al(CH3)3 + H2O/O3 process to form aluminates and together with ozone to form silicates. Sodium and potassium tert-butoxide and sodium trimethylsilanolate showed self-limiting growth and proved useable at deposition temperatures from 225 to 375 or 300 °C, respectively. The crystal structures of NaOtBu and KOtBu were determined by single crystal diffraction revealing hexamer- and tetramer structures, respectively. The current work demonstrates the suitability of the ALD technique to deposit thin films containing alkaline elements even at 8′′ wafer scale.

Graphical abstract: Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Jun 2014, accepted on 18 Sep 2014 and first published on 19 Sep 2014


Article type: Paper
DOI: 10.1039/C4DT01930J
Citation: Dalton Trans., 2014,43, 16666-16672
  • Open access: Creative Commons BY license
  •   Request permissions

    Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films

    E. Østreng, H. H. Sønsteby, S. Øien, O. Nilsen and H. Fjellvåg, Dalton Trans., 2014, 43, 16666
    DOI: 10.1039/C4DT01930J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements