Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 23, 2014
Previous Article Next Article

Bis(phosphinoselenoic amides) as versatile chelating ligands for alkaline earth metal (Mg, Ca, Sr and Ba) complexes: syntheses, structure and ε-caprolactone polymerisation

Author affiliations

Abstract

We report here a series of heavier alkaline earth metal complexes with N,N′-(ethane-1,2-diyl)bis(P,P-diphenylphosphinoselenoic amide) using two synthetic routes. In the first route, the heavier alkaline earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba), when treated with phosphinoselenoic amine [Ph2P(Se)NHCH2CH2NHPPh2(Se)] (1), afforded the corresponding alkaline earth metal complexes of the composition [(THF)3M{Ph2P(Se)NCH2CH2NPPh2(Se)}] [M = Ca (2), Sr (3), Ba (4)]. The metal complexes 2–4 were also obtained from a one-pot reaction, where potassium phosphinoselenoic amide was generated in situ by the reaction of compound 1 and [KN(SiMe3)2], followed by the addition of the respective metal diiodides in THF at room temperature. The magnesium complex [(THF)3Mg{Ph2P(Se)NCH2CH2NPPh2(Se)}] (5) was also prepared. The solid-state structures of alkaline earth metal complexes 2–5 were established by single crystal X-ray diffraction analysis. In the solid state, all the metal complexes are monomeric but in complexes 2–4, ligand 1 is chelated in a tetra-dentate fashion to each metal ion but in complex 5, ligand 1 behaves as a bidentate ligand. Complexes 2–4 were tested as catalysts for the ring-opening polymerisation of ε-caprolactone and a high level of activity for the barium complex 4 was observed, with narrow polydispersity. We also report the synthesis and structure of the bis(amidophosphino borane) ligand [Ph2P(BH3)NHCH2CH2NHPPh2(BH3)] (6) and the corresponding barium complex [(THF)2Ba{Ph2P(BH3)NCH2CH2NPPh2(BH3)}]2 (7).

Graphical abstract: Bis(phosphinoselenoic amides) as versatile chelating ligands for alkaline earth metal (Mg, Ca, Sr and Ba) complexes: syntheses, structure and ε-caprolactone polymerisation

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 05 Mar 2014, accepted on 03 Apr 2014 and first published on 03 Apr 2014


Article type: Paper
DOI: 10.1039/C4DT00669K
Citation: Dalton Trans., 2014,43, 8757-8766
  • Open access: Creative Commons BY license
  •   Request permissions

    Bis(phosphinoselenoic amides) as versatile chelating ligands for alkaline earth metal (Mg, Ca, Sr and Ba) complexes: syntheses, structure and ε-caprolactone polymerisation

    R. K. Kottalanka, H. Adimulam, J. Bhattacharjee, H. Vignesh Babu and T. K. Panda, Dalton Trans., 2014, 43, 8757
    DOI: 10.1039/C4DT00669K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author