Issue 26, 2014

Gas-phase structures of sterically crowded disilanes studied by electron diffraction and quantum chemical methods: 1,1,2,2-tetrakis(trimethylsilyl)disilane and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane

Abstract

The gas-phase structures of the disilanes 1,1,2,2-tetrakis(trimethylsilyl)disilane [(Me3Si)2HSiSiH(SiMe3)2] (1) and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane [(Me3Si)2MeSiSiMe(SiMe3)2] (2) have been determined by density functional theoretical calculations and by gas electron diffraction (GED) employing the SARACEN method. For each of 1 and 2 DFT calculations revealed four C2-symmetric conformers occupying minima on the respective potential-energy surfaces; three conformers were estimated to be present in sufficient quantities to be taken into account when fitting the GED data. For (Me3Si)2RSiSiR(SiMe3)2 [R = H (1), CH3 (2)] the lowest energy conformers were found by GED to have RSiSiR dihedral angles of 87.7(17)° for 1 and −47.0(6)° for 2. For each of 1 and 2 the presence of bulky and flexible trimethylsilyl groups dictates many aspects of the geometric structures in the gas phase, with the molecules often adopting structures that reduce steric strain.

Graphical abstract: Gas-phase structures of sterically crowded disilanes studied by electron diffraction and quantum chemical methods: 1,1,2,2-tetrakis(trimethylsilyl)disilane and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2014
Accepted
19 May 2014
First published
21 May 2014

Dalton Trans., 2014,43, 10175-10182

Author version available

Gas-phase structures of sterically crowded disilanes studied by electron diffraction and quantum chemical methods: 1,1,2,2-tetrakis(trimethylsilyl)disilane and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane

J. Schwabedissen, P. D. Lane, S. L. Masters, K. Hassler and D. A. Wann, Dalton Trans., 2014, 43, 10175 DOI: 10.1039/C4DT00628C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements