Issue 5, 2014

Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = Mn–Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F

Abstract

The new compound LiNaMg[PO4]F has been synthesized by a wet chemical reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. LiNaMg[PO4]F crystallizes with the monoclinic pseudomerohedrally twinned LiNaNi[PO4]F structure, space group P21/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, β = 90.00(1)° and Z = 4. The structure contains [MgO3F]n chains made up of zigzag edge-sharing MgO4F2 octahedra. These chains are interlinked by PO4 tetrahedra forming 2D-Mg[PO4]F layers. The alkali metal atoms are well ordered in between these layers over two atomic positions. The use of group–subgroup transformation schemes in the Bärnighausen formalism enabled us to determine precise phase transition mechanisms from LiNaNi[PO4]F- to Na2M[PO4]F-type structures (M = Mn–Ni, and Mg) (see video clip 1 and 2). The crystal and magnetic structure and properties of the parent LiNaNi[PO4]F phase were also studied by magnetometry and neutron powder diffraction. Despite the rather long interlayer distance, dmin(Ni+2–Ni+2) ∼ 6.8 Å, the material develops a long-range magnetic order below 5 K. The magnetic structure can be viewed as antiferromagnetically coupled ferromagnetic layers with moments parallel to the b-axis.

Graphical abstract: Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = Mn–Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2013
Accepted
07 Nov 2013
First published
11 Nov 2013

Dalton Trans., 2014,43, 2044-2051

Author version available

Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = Mn–Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F

H. Ben Yahia, M. Shikano, H. Kobayashi, M. Avdeev, S. Liu and C. D. Ling, Dalton Trans., 2014, 43, 2044 DOI: 10.1039/C3DT52587B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements