Issue 2, 2014

Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation

Abstract

Silica supported Cu–Ni (20 wt% Cu + Ni on silica, molar ratio of Cu/Ni = 2) alloys are prepared via impregnation, coprecipitation, and deposition–coprecipitation methods. The approach to co-precipitate the SiO2 from Na2SiO3 together with metal precursors is found to be an efficient way to prepare high surface area silica supported catalysts (BET surface area up to 322 m2 g−1, and metal area calculated from X-ray diffraction particle size up to 29 m2 g−1). The formation of bimetallic Cu–Ni alloy nanoparticles has been studied during reduction using in situ X-ray diffraction. Compared to impregnation, the coprecipitation and deposition–coprecipitation methods are more efficient for preparation of small and homogeneous Cu–Ni alloy nanoparticles. In order to examine the stability of Cu–Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation (50 bar CO and 50 bar H2). These alloy catalysts are highly selective (more than 99 mol%) and active for methanol synthesis; however, loss of Ni caused by nickel carbonyl formation is found to be a serious issue. The Ni carbonyl formation should be considered, if Ni-containing catalysts (even in alloyed form) are used under conditions with high partial pressure of CO.

Graphical abstract: Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation

Article information

Article type
Paper
Submitted
25 Jul 2013
Accepted
03 Nov 2013
First published
04 Nov 2013

Catal. Sci. Technol., 2014,4, 378-386

Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation

Q. Wu, W. L. Eriksen, L. D. L. Duchstein, J. M. Christensen, C. D. Damsgaard, J. B. Wagner, B. Temel, J. Grunwaldt and A. D. Jensen, Catal. Sci. Technol., 2014, 4, 378 DOI: 10.1039/C3CY00546A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements