Jump to main content
Jump to site search

Issue 1, 2015
Previous Article Next Article

Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers

Author affiliations

Abstract

In this tutorial we review recent progress in the design and growth of epitaxial semiconductor nanostructures in lattice-mismatched material systems. We focus on the Ge on Si model system after pointing out the similarities to III–V and other growth systems qualitatively as well as quantitatively. During material deposition, the first layers of the epitaxial film wet the surface before the formation of strain-driven three-dimensional nanostructures. In particular, we stress that the supersaturation of the wetting layer (WL), whose relevance is often neglected, plays a key role in determining the nucleation and growth of nanodots (NDs), nanodot-molecules and nanowires (NWs). At elevated growth temperatures the Ge reservoir in the planar, supersaturated WL is abruptly consumed and generates NDs with highly homogeneous sizes – a process mainly driven by elastic energy minimization. Furthermore, the careful control of the supersaturated Ge layer allows us to obtain perfectly site-controlled, ordered NDs or ND-molecules on pit-patterned substrates for a broad range of pit-periods. At low growth temperatures subtle interplays between surface energies of dominant crystal facets in the system drive the material transfer from the supersaturated WL into the elongating NWs growing horizontally, dislocation- and catalyst-free on the substrate surface. Due to the similarities in the formation of nanostructures in different epitaxial semiconductor systems we expect that the observation of the novel growth phenomena described in this Tutorial Review for Ge/Si should be relevant for other lattice-mismatched heterostructure systems, too.

Graphical abstract: Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 17 Feb 2014 and first published on 23 May 2014


Article type: Tutorial Review
DOI: 10.1039/C4CS00077C
Citation: Chem. Soc. Rev., 2015,44, 26-39
  • Open access: Creative Commons BY license
  •   Request permissions

    Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers

    J. Zhang, M. Brehm, M. Grydlik and O. G. Schmidt, Chem. Soc. Rev., 2015, 44, 26
    DOI: 10.1039/C4CS00077C

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author