Issue 8, 2014

The analysis of solution self-assembled polymeric nanomaterials

Abstract

There has been much interest in the construction of soft nanomaterials in solution due to a desire to emulate the exquisite structure and function of Nature's equivalents (e.g. enzymes, viruses, proteins and DNA). Nature's soft nanomaterials are capable of selectivity, precision and efficiency in areas such as information storage and replication, transportation and delivery, and synthesis and catalysis. To this end, the use of small molecules, amphiphiles, colloids, and polymers have been investigated for the development of advanced materials in myriad fields of biomedicine and synthetic chemistry. Two major challenges are faced in this area of research: the reproducible, scalable and precise synthesis of such constructs and the reliable, accurate and in-depth analysis of these materials. This tutorial review will focus on this second aspect and provide a guide for the characterisation and analysis of soft nanomaterials in solution using scattering and microscopic techniques.

Graphical abstract: The analysis of solution self-assembled polymeric nanomaterials

Supplementary files

Article information

Article type
Tutorial Review
Submitted
10 Dec 2013
First published
12 Feb 2014

Chem. Soc. Rev., 2014,43, 2412-2425

Author version available

The analysis of solution self-assembled polymeric nanomaterials

J. P. Patterson, M. P. Robin, C. Chassenieux, O. Colombani and R. K. O'Reilly, Chem. Soc. Rev., 2014, 43, 2412 DOI: 10.1039/C3CS60454C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements