Issue 11, 2014

Super-resolution imaging of SERS hot spots

Abstract

Surface-enhanced Raman scattering (SERS) hot spots occur when molecules are positioned near regions of strongly enhanced electromagnetic fields on the surface of nano-featured plasmonic substrates. The emission from the molecule is coupled out into the far field by the plasmon modes of the substrate, but due to the diffraction-limit of light, the properties of this coupled molecule-plasmon emitter cannot be resolved using typical far-field optical microscopy techniques. However, by fitting the emission to a model function such as 2-dimensional Gaussian, the relative position of the emitter can be determined with precision better than 5 nm in a process known as super-resolution imaging. This tutorial review describes the basic principles of super-resolution imaging of SERS hot spots using single molecules to probe local electromagnetic field enhancements. New advances using dipole-based fitting functions and spectrally- and spatially-resolved measurements are described, providing new insight into SERS hot spots and the important roles of both the molecule and the substrate in defining their properties.

Graphical abstract: Super-resolution imaging of SERS hot spots

Article information

Article type
Tutorial Review
Submitted
20 Sep 2013
First published
05 Dec 2013

Chem. Soc. Rev., 2014,43, 3854-3864

Author version available

Super-resolution imaging of SERS hot spots

K. A. Willets, Chem. Soc. Rev., 2014, 43, 3854 DOI: 10.1039/C3CS60334B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements