Issue 4, 2014

Deconstructing the photon stream from single nanocrystals: from binning to correlation

Abstract

Prior to the advent of single-molecule fluorescence spectroscopy, many of the fundamental optical properties of colloidal semiconductor nanocrystal quantum dots were obscured by ensemble averaging over their inherent inhomogeneities. Single quantum dot spectroscopy has become a leading technique for the unambiguous determination of the governing excitonic physics of these quantum-confined systems. The analysis and interpretation of the timing and energies of photons emitted from individual nanocrystals have uncovered unexpected and fundamental electronic processes at the nanoscale. We review several different paradigms for deconstructing the photon stream from single nanocrystals, ranging from intensity “binning” techniques to more sophisticated methods based on single-photon counting. In particular, we highlight photon correlation – a powerful developing paradigm in single-nanocrystal studies. The application of photon-correlation techniques to single nanocrystals is changing the study of multiexcitonic recombination dynamics, uncovering the basic processes governing spectral linewidths and spectral diffusion, and enabling the extraction of single-nanocrystal properties directly from an ensemble with high statistical significance. These single-molecule techniques have proven invaluable for understanding the physics of nanocrystals and can provide unique insight into other heterogeneous and dynamical systems.

Graphical abstract: Deconstructing the photon stream from single nanocrystals: from binning to correlation

Additions and corrections

Article information

Article type
Review Article
Submitted
17 Sep 2013
First published
27 Nov 2013

Chem. Soc. Rev., 2014,43, 1287-1310

Deconstructing the photon stream from single nanocrystals: from binning to correlation

J. Cui, A. P. Beyler, T. S. Bischof, M. W. B. Wilson and M. G. Bawendi, Chem. Soc. Rev., 2014, 43, 1287 DOI: 10.1039/C3CS60330J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements