Issue 42, 2014

Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces

Abstract

Atomistic molecular dynamics simulations have been performed to study microscopic ionic structures and orientational preferences of absorbed [BMIM] cations and four paired anions ([BF4], [PF6], [TFO] and [TF2N]) on quartz surfaces. Two chemically different quartz surface models were adopted: one is saturated with silanol Si(OH)2 groups, and the other one is covered by silane SiH2 groups, respectively. Simulation results reveal that dense ionic layers, characterized by distinct mass, number, charge and electron densities, are formed in quartz interfacial region. The orientational preferences of confined ionic groups are characterized with different features depending on the size and shape of anionic groups, and the quartz surface charge. The [BMIM] cations attach exclusively onto the negatively charged Si(OH)2 surface. The imidazolium rings lie preferentially perpendicular to Si(OH)2 surface, to which the directly connected methyl and butyl chains are oriented and elongated along Si(OH)2 surface, respectively. The anions are mainly absorbed on positively charged SiH2 surface. The main axes of asymmetric [TFO] and [TF2N] anions are perpendicular and parallel to SiH2 surface, respectively. Such distinct structural and orientational preferences of confined ionic groups attribute to the strong electrostatic interactions and the formation of hydrogen bonds between confined ionic species and quartz interfacial groups.

Graphical abstract: Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2014
Accepted
02 Sep 2014
First published
09 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 23329-23339

Author version available

Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces

Y. Wang and A. Laaksonen, Phys. Chem. Chem. Phys., 2014, 16, 23329 DOI: 10.1039/C4CP03077J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements