Issue 32, 2014

A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions

Abstract

The gas phase decomposition reactions of precursor molecules relevant for metal–organic vapour phase epitaxy (MOVPE) of semiconductor thin films are investigated by computational methods on the density-functional level as well as on the ab initio (MP2, CCSD(T)) level. A comprehensive reaction catalogue of uni- and bimolecular reactions is presented for triethylgallium (TEG) as well as for tert-butylphosphine (TBP) containing thermodynamic data together with transition state energies. From these energies it can be concluded that TEG is decomposed in the gas phase under MOVPE conditions (T = 400–675 °C, p = 0.05 atm) to GaH3via a series of β-hydride elimination reactions. For elevated temperatures, further decomposition to GaH is thermodynamically accessible. In the case of TBP, the original precursor molecule will be most abundant since all reaction channels exhibit either large barriers or unfavorable thermodynamics. Dispersion-corrected density functional calculations (PBE-D3) provide an accurate description of the reactions investigated in comparison to high level CCSD(T) calculations serving as benchmark values.

Graphical abstract: A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2014
Accepted
24 Jun 2014
First published
09 Jul 2014
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2014,16, 17018-17029

Author version available

A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions

A. Stegmüller, P. Rosenow and R. Tonner, Phys. Chem. Chem. Phys., 2014, 16, 17018 DOI: 10.1039/C4CP01584C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements