Jump to main content
Jump to site search

Issue 11, 2014
Previous Article Next Article

High-pressure crystallographic and spectroscopic studies on two molecular dithienylethene switches

Author affiliations

Abstract

Single crystals of the dithienylethene compounds, 1,2-bis(2-methylbenzothiophen-3-yl)perfluorocyclopentene 1 and 1,2-bis(2,5-dimethylthiophen-3-yl)perfluorocyclopentene 2 undergo pressure-induced single-crystal to single-crystal phase transitions between 4.45–5.35 GPa and 4.15–5.70 GPa, respectively. For 1, there is a smooth reduction in unit-cell volume of ~20% from ambient pressure to 4.45 GPa, followed by a dramatic reduction in volume that coincides with a 7.7% increase in the b axis length. Above the pressure of 5.38 GPa a smooth volume reduction continues. In contrast, for 2, there is a continuous change in unit-cell volume with an observed space group change from C2/c to P21/c, between the pressures of 4.15 and 5.70 GPa. In the crystals of 1 between 4.45 and 5.38 GPa adjacent molecules slide over each other and the dominant stacking interaction changes from a thiophene⋯thiophene interaction at 4.45 GPa to a benzothiophene⋯benzothiophene interaction at 5.38 GPa and, within each molecule, the benzothiophene groups show a significant reorientation at the phase transition. In 2 there is a loss of molecular symmetry, concomitant with the change in space group, at the phase transition with the asymmetric unit changing from containing half a unique molecule to two independent molecules. The molecules show significant reorientations of their ring systems. The nature of the observed transition in 1 was investigated using solid-state computational methods to prove the superior thermodynamic stability of the high-pressure phase to the lower pressure phase at pressures above 5.38 GPa. Solid state UV-Vis spectroscopy of 1, over the pressure range from ambient to 15.4 GPa showed that the compound displayed piezochromism with a significant red shift in the π–π* absorption band and a colour change in the crystal from colourless to red with increasing pressure.

Graphical abstract: High-pressure crystallographic and spectroscopic studies on two molecular dithienylethene switches

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Sep 2013, accepted on 15 Nov 2013 and first published on 15 Nov 2013


Article type: Paper
DOI: 10.1039/C3CE41933A
Citation: CrystEngComm, 2014,16, 2119-2128
  • Open access: Creative Commons BY license
  •   Request permissions

    High-pressure crystallographic and spectroscopic studies on two molecular dithienylethene switches

    C. H. Woodall, S. K. Brayshaw, S. Schiffers, D. R. Allan, S. Parsons, R. Valiente and P. R. Raithby, CrystEngComm, 2014, 16, 2119
    DOI: 10.1039/C3CE41933A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements