Jump to main content
Jump to site search

Issue 19, 2014
Previous Article Next Article

Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides

Author affiliations

Abstract

Structural characterisation and reactivity of new tetrahedral intermediates based on a highly modular barbituric acid scaffold, formed via chemoselective electron transfer using the SmI2–H2O reagent, are reported. Lewis acid promoted cleavage of bicyclic α-amino alcohols affords vinylogous N-acyliminium ions, which undergo selective (>95 : 5, 1,4 over 1,2) capture with a suite of diverse nucleophiles in a practical sequence to biologically active uracil derivatives.

Graphical abstract: Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 22 Nov 2013, accepted on 11 Dec 2013 and first published on 12 Dec 2013


Article type: Communication
DOI: 10.1039/C3CC48932A
Citation: Chem. Commun., 2014,50, 2518-2521
  • Open access: Creative Commons BY license
  •   Request permissions

    Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides

    M. Szostak, B. Sautier and D. J. Procter, Chem. Commun., 2014, 50, 2518
    DOI: 10.1039/C3CC48932A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author