Jump to main content
Jump to site search

Issue 3, 2014
Previous Article Next Article

Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate

Author affiliations

Abstract

Conventional 2D substrates fail to represent the natural environment of cells surrounded by the 3D extracellular matrix (ECM). We have proposed sandwich-like microenvironments as a versatile tool to study cell behaviour under quasi-3D conditions. This is a system that provides a broad range of dorsal and ventral independent spatio-temporal stimuli. Here, we use this sandwich technology to address the role of dorsal stimuli in cell adhesion, cell proliferation and ECM reorganisation. Under certain conditions, dorsal stimuli within sandwich microenvironments prevent the formation of focal plaques as well as the development of the actin cytoskeleton, whereas α5versus αv integrin expression is increased compared to the corresponding 2D controls. Cell signaling is similarly enhanced after dorsal stimuli (measured by the pFAK/FAK level) for cells sandwiched after 3 h of 2D ventral adhesion, but not when sandwiched immediately after cell seeding (similar levels to the 2D control). Cell proliferation, studied by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay, was significantly reduced within sandwich conditions as compared to 2D substrates. In addition, these results were found to depend on the ability of cells to reorganise the dorsal layer of proteins at the material interface, which could be tuned by adsorbing FN on material surfaces that results in a qualitatively different conformation and distribution of FN. Overall, sandwich-like microenvironments switch cell behaviour (cell adhesion, morphology and proliferation) towards 3D-like patterns, demonstrating the importance of this versatile, simple and robust approach to mimic cell microenvironments in vivo.

Graphical abstract: Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate

Back to tab navigation

Publication details

The article was received on 16 Oct 2013, accepted on 15 Nov 2013 and first published on 25 Nov 2013


Article type: Paper
DOI: 10.1039/C3BM60248F
Author version
available:
Download author version (PDF)
Citation: Biomater. Sci., 2014,2, 381-389
  • Open access: Creative Commons BY license
  •   Request permissions

    Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate

    J. Ballester-Beltrán, D. Moratal, M. Lebourg and M. Salmerón-Sánchez, Biomater. Sci., 2014, 2, 381
    DOI: 10.1039/C3BM60248F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements