Issue 2, 2014

Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors

Abstract

Pluripotent stem cells hold great promise for many pharmaceutical and therapeutic applications. However, the lack of scalable methodologies to expand these cells to clinically relevant numbers is a major roadblock in realizing their full potential. To address this problem, we report here a scalable approach for the expansion of pluripotent stem cells within bioactive hydrogel capsules in stirred bioreactors. To achieve rapid crosslinking of cellular microenvironments with tuneable, cell-instructive functionality, we combined calcium-mediated alginate (CaAlg) complexation with crosslinking of poly(ethylene glycol) (PEG) macromers via a Michael-type addition. The resulting hybrid networks have been shown to have very good handling properties and can be readily decorated with biologically active signals such as integrin ligands or Cadherin-based motifs to influence the fate of mouse induced pluripotent stem (iPS) cells. Air-driven co-axial extrusion was used to reproducibly generate gel microcapsules in high-throughput. Furthermore, the gel capsules can be enveloped in a poly(L-lysine) shell to control swelling or molecular permeability independently of the gel composition. iPS cells entrapped within such capsules expanded with limited commitment to the endodermal lineage. Functionalization of gels with an appropriate density of Arg-Gly-Asp (RGD) ligands further increased the iPS cell expansion rate and reduced the spontaneous differentiation. Therefore, the combination of micro-scale instruction of cell fate by an engineered microenvironment and macro-scale cell manipulation in bioreactors opens up exciting opportunities for stem cell-based applications.

Graphical abstract: Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors

Article information

Article type
Paper
Submitted
24 Jul 2013
Accepted
10 Sep 2013
First published
01 Oct 2013

Biomater. Sci., 2014,2, 176-183

Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors

Y. Tabata, I. Horiguchi, M. P. Lutolf and Y. Sakai, Biomater. Sci., 2014, 2, 176 DOI: 10.1039/C3BM60183H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements