Issue 21, 2014

Nano molar detection of Al3+ in aqueous medium and acidic soil using chromone based fluorescent organic nanoparticles (FONPs)

Abstract

Compounds 1 (1,2-bis[4-oxo-4H-1-benzopyran-3-ylmethylenamino]-ethanes) and 2 (3-((E)-(3-(dimethylamino) propylimino)methyl)-4H-chromen-4-one) were synthesized using a one pot condensation reaction between 3-formylchromone and ethylenediamine/N,N-dimethylpropylamine, respectively. Compounds 1 and 2 were purified and characterized using 1H and 13C NMR, IR, mass and CHN analysis. Fluorescent organic nanoparticles (FONPs) were developed from the compounds 1 and 2 using a reprecipitation technique. The size and morphology of nano-aggregates 1 and 2 was analysed using DLS and TEM analysis. Nanoaggregates of 1 and 2 were further exploited for chemosensory applications in an aqueous medium. An efficient nanoaggregate of compound 1 has shown an excellent detection limit of 100 nM for Al3+ in an aqueous medium. The stoichiometry of the complex formation of 1 with Al3+ was found to be 1 : 1 using Job's plot method. The sensor 1 was further checked for its practical applications, e.g., soil and water analysis (drinking, tap and river water). Results of Al3+ determination in soil and water were well coordinated with the existing methods. Finally, the mechanism of fluorescence recognition is supported with DFT calculations, which shows the effective binding of Al3+ with chromone leading to the lowering in the energy and thus stability. The present approach is the first report on the fabrication and chemosensory applications of chromone-based FONPs for the nanomolar detection of Al3+ in an aqueous medium.

Graphical abstract: Nano molar detection of Al3+ in aqueous medium and acidic soil using chromone based fluorescent organic nanoparticles (FONPs)

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2014
Accepted
29 Aug 2014
First published
01 Sep 2014

Anal. Methods, 2014,6, 8752-8759

Nano molar detection of Al3+ in aqueous medium and acidic soil using chromone based fluorescent organic nanoparticles (FONPs)

A. Kaur, T. Raj, S. Kaur and N. Kaur, Anal. Methods, 2014, 6, 8752 DOI: 10.1039/C4AY01772B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements