Issue 15, 2014

Viral plaque analysis on a wide field-of-view, time-lapse, on-chip imaging platform

Abstract

The observation of viral plaques is the standard method for determining the viral titer and understanding the behaviors of viruses. Here, we report the application of a wide field-of-view (FOV), time-lapse, on-chip imaging platform, termed the ePetri, for plaque analysis of murine norovirus 1 (MNV-1). The ePetri offers the ability to dynamically track plaques at the individual cell death event level over a wide FOV of 6 mm × 4 mm. As demonstration, we captured high-resolution time-lapse images of MNV-1-infected cells at 30 min intervals. We implemented a customized image-processing program containing a density-based clustering algorithm to analyze the spatial-temporal distribution of cell death events to identify plaques at their earliest stages. By using the results in a viral titer count format, we showed that our approach gives results that are comparable to conventional plaque assays. We further showed that the extra information collected by the ePetri can be used to monitor the dynamics of plaque formation and growth. Finally, we performed a demonstration experiment to show the relevance of such an experimental format for viral inhibitor study. We believe the ePetri is a simple and compact solution for the automation of viral plaque assays, plaque behavior analysis, and antiviral drug discovery and study.

Graphical abstract: Viral plaque analysis on a wide field-of-view, time-lapse, on-chip imaging platform

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2013
Accepted
04 Feb 2014
First published
04 Feb 2014

Analyst, 2014,139, 3727-3734

Author version available

Viral plaque analysis on a wide field-of-view, time-lapse, on-chip imaging platform

C. Han and C. Yang, Analyst, 2014, 139, 3727 DOI: 10.1039/C3AN02323K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements