Issue 48, 2013

High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells

Abstract

Graphene/Si hole array (SiHA) Schottky junctions show great promise as high-efficiency, cost-effective solar cells. However, their applications are still limited by the severe surface recombination of the nano-hole SiHA and inferior device stability arising from volatile oxidant doping. Here, we demonstrate the construction of high-efficiency graphene/SiHA devices with enhanced device performance and stability. The micro-hole SiHA fabricated by photolithography and reaction ion etching (RIE) possesses a smooth surface, thus ensuring a low surface recombination velocity. Also, the light harvesting of the micro-hole SiHA could be readily tuned by adjusting the hole depth. Introduction of the micro-hole SiHA, along with the use of AuCl3 for graphene doping, gives rise to a high power conversion efficiency (PCE) of 10.40% for the graphene/SiHA devices. Additionally, the device stability is substantially improved and shows a relatively low degradation ratio after storing in air for 3 months. It is expected that the graphene/SiHA devices will have important applications in new-generation Si solar cells.

Graphical abstract: High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells

Supplementary files

Article information

Article type
Paper
Submitted
18 Sep 2013
Accepted
15 Oct 2013
First published
16 Oct 2013

J. Mater. Chem. A, 2013,1, 15348-15354

High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells

C. Xie, X. Zhang, K. Ruan, Z. Shao, S. S. Dhaliwal, L. Wang, Q. Zhang, X. Zhang and J. Jie, J. Mater. Chem. A, 2013, 1, 15348 DOI: 10.1039/C3TA13750C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements