Jump to main content
Jump to site search

Issue 47, 2013
Previous Article Next Article

Graphene for supercapacitor applications

Author affiliations


Graphene has attracted extensive interest in the field of supercapacitor research due to its 2D structure which grants it exceptional properties such as superior electrical conductivity and mechanical properties as well as an extensive surface area better than that of carbon nanotubes (CNTs). Furthermore, unlike other carbon materials, graphene is particularly optimal for supercapacitor applications as its surface area does not vary with pore size distribution and grants electrolyte access to both its surfaces. This article aims to review the advances in recent research and development of the use of graphene for supercapacitor use. The focus would mainly be on the areas of graphene synthesis, graphene modification, graphene–nanoporous carbon composites, graphene–polymer composites and graphene–metal oxides and their potential use in both asymmetric and symmetric supercapacitors. Lastly, the article aims to identify optimal testing methods for electrode performance and choice of electrolytes. It will then stress the increasing need to standardise electrode testing to ensure that test results are as relevant to real life applications as possible.

Graphical abstract: Graphene for supercapacitor applications

Back to tab navigation

Publication details

The article was received on 06 Jun 2013, accepted on 27 Aug 2013 and first published on 24 Sep 2013

Article type: Feature Article
DOI: 10.1039/C3TA12193C
Citation: J. Mater. Chem. A, 2013,1, 14814-14843
  •   Request permissions

    Graphene for supercapacitor applications

    Y. B. Tan and J. Lee, J. Mater. Chem. A, 2013, 1, 14814
    DOI: 10.1039/C3TA12193C

Search articles by author