Issue 29, 2013

Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene

Abstract

Colloidal Mn3O4 nanocrystals supported by graphene oxide (GO) and reduced graphene oxide (RGO) (Mn3O4/GO and Mn3O4/RGO nanocomposites) have been fabricated through a facile synthetic route with ultrasonic-assisted in ethanol amine (ETA)-water system. It is proposed that in the formation mechanism of these intriguing nanocomposites, investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the manganese ions are anchored on GO nanosheets (GOs) or enwrapped in curved RGO nanosheets (RGOs), followed by the nucleation and growth of Mn3O4 nanoparticles in ethanol ETA-water system via hydrolysis and oxidation, which in turn results in the exfoliation of GOs or RGOs. Based on the surface properties of GO and RGO, this work firstly explains how the synergetic compositing structure of Mn3O4/GO and Mn3O4/RGO nanocomposites plays a very important role in their properties for electrochemical capacitors (ECs) or lithium ion batteries (LIBs). The opinions we put forward may be readily extended to a strong basis for other classes of hybrids based on GOs or RGOs to make a wise choice between the ECs and LIBs applications.

Graphical abstract: Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2013
Accepted
19 Apr 2013
First published
19 Apr 2013

J. Mater. Chem. A, 2013,1, 8385-8397

Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene

L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto and G. Yang, J. Mater. Chem. A, 2013, 1, 8385 DOI: 10.1039/C3TA10237H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements