Issue 25, 2013

Adhesive force between paired microdroplets coated with lipid monolayers

Abstract

We created pairs of adhering water-in-oil microdroplets coated with lipid monolayers as model cells and studied the effects of the physicochemical properties of the lipids on the adhesive force ΔF. Four species of liquid-phase lipids were used: dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC). The dependence of ΔF on the choice of lipid was evaluated by independently measuring the interfacial tension at the oil–water interface, γ, and the contact angle between the adhering droplets, θ. It was found that a difference in size between the hydrophilic head and hydrophobic tail of the lipids results in an increase in γ. Hence, cone-shaped DOPE had a larger γ than did cylinder-shaped PC (γ: DOPE ≫ DMPC ∼ DPPC > DOPC). On the other hand, DMPC with the shortest tail length had the smallest θ among the lipids (θ: DOPC > DPPC > DOPE ≫ DMPC). Finally, it was found that ΔF drastically decreases when the carbon number of the alkyl chain in the tails is smaller than 16 (ΔF: DOPE > DOPC ∼ DPPC ≫ DMPC). Furthermore, using polyethylene glycol (PEG)-conjugated DOPE, we demonstrated that the conjugation of shorter PEG molecules (<750) to the head part of the DOPE changes its molecular shape to cylindrical, and thus its γ and ΔF become similar to those of the DOPC system.

Graphical abstract: Adhesive force between paired microdroplets coated with lipid monolayers

Article information

Article type
Paper
Submitted
05 Apr 2013
Accepted
24 Apr 2013
First published
20 May 2013

Soft Matter, 2013,9, 5891-5897

Adhesive force between paired microdroplets coated with lipid monolayers

M. Yanagisawa, T. Yoshida, M. Furuta, S. Nakata and M. Tokita, Soft Matter, 2013, 9, 5891 DOI: 10.1039/C3SM50938A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements