Issue 18, 2013

Ethanol promotes dewetting transition at low concentrations

Abstract

Recent studies have suggested important roles for nanoscale dewetting in the stability and self-assembly dynamics of both physical and biological systems. Less known is the cosolvent (such as ethanol) effect on nanoscale dewetting. Here, we use molecular dynamics simulations to investigate the dewetting behavior in-between two hydrophobic plates immersed in ethanol aqueous solutions, particularly at low concentrations. Unexpectedly, the existence of a small amount of ethanol molecules promotes the dewetting transition in the inter-plate region at a greater separation that is otherwise non-existent in pure water or pure ethanol. We find that a competition for ethanol molecules at equilibrium among the inter-plate region, the outer-surfaces of the plates and the bulk solution results in a depletion of ethanol molecules in the inter-plate region. Meanwhile, the preferred inward orientations of the ethanol ethyl groups at the liquid–vapor interface located at the edge of the plates make the inter-plate core more hydrophobic so that water molecules are more favored to be expelled, thus resulting in an enhancement of the dewetting. These findings provide a deeper understanding of the effects of cosolvents on the hydrophobic interaction.

Graphical abstract: Ethanol promotes dewetting transition at low concentrations

Article information

Article type
Paper
Submitted
07 Jan 2013
Accepted
05 Mar 2013
First published
25 Mar 2013

Soft Matter, 2013,9, 4655-4660

Ethanol promotes dewetting transition at low concentrations

X. Ren, C. Wang, B. Zhou, H. Fang, J. Hu and R. Zhou, Soft Matter, 2013, 9, 4655 DOI: 10.1039/C3SM00049D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements