Issue 38, 2013

Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite

Abstract

The production of graphite oxide from graphite usually requires strong oxidants, concentrated acids, and a reaction time of the order of 100 h. In this study, we adopted a highly efficient cathodic plasma (CP) process in which the vapor plasma envelope calorific effect provides instant oxidation and expansion of graphite for producing plasma-expanded graphite oxides (PEGOs) from recycled graphite electrodes (GEs) or high purity graphite (HG), within a reaction time of 10 min without the need for strong oxidants or concentrated acids. X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the dramatic structural change from GEs or HG to graphite oxides after the CP process. Furthermore, scanning electron microscopy and transmission electron microscopy revealed that the graphite oxide possessed a spheroidal morphology, with dimensions of 1–3 μm, as a result of melting and subsequent quenching during the plasma electrolysis process. We obtained a stable, homogeneous dispersion of PEGOs in N-methyl-2-pyrrolidone after sonication and filtering of the centrifuged PEGOs. We used these spheroidal graphite oxide particles as effective adsorbents for the removal of pollutants (e.g., Methylene Blue) from aqueous solutions. These PEGOs also served as good precursors for the preparation of graphite nanoplatelets. CP processing appears to be an effective and environmentally friendly means for mass-producing graphite oxide.

Graphical abstract: Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2013
Accepted
22 Jul 2013
First published
23 Jul 2013

RSC Adv., 2013,3, 17402-17410

Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite

D. V. Thanh, H. Chen, L. Li, C. Chu and K. Wei, RSC Adv., 2013, 3, 17402 DOI: 10.1039/C3RA43084G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements