Issue 22, 2013

Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices

Abstract

A simple and scalable method was proposed to fabricate graphene papers, and the graphene sheets were prepared using conventional chemical vapor deposition (CVD) method. The CVD graphene papers possess much higher electrical conductivity of 1097 S cm−1, compared with other reported carbon-related papers (graphene, carbon nanotube, etc.). The graphene papers have good flexibility with only <5% loss of electrical conductivity after mechanically bending 500 times. Such free-standing graphene papers can replace expensive Pt/FTO counter electrodes of dye-sensitized solar cells with better energy conversion efficiency, and also be used as anodes of lithium ion batteries possessing a superior high-rate capacity and cycling performance. The highly conductive, free-standing and flexible graphene papers reveal potential in high-performance, flexible energy conversion and storage devices.

Graphical abstract: Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2012
Accepted
22 Mar 2013
First published
27 Mar 2013

RSC Adv., 2013,3, 8454-8460

Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices

H. Bi, J. Chen, W. Zhao, S. Sun, Y. Tang, T. Lin, F. Huang, X. Zhou, X. Xie and M. Jiang, RSC Adv., 2013, 3, 8454 DOI: 10.1039/C3RA23500A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements