Issue 43, 2013

Integrated tandem dye solar cells

Abstract

Tandem cells (or multi-junction cells) have been shown to be the most efficient architecture to achieve record performance for most photovoltaic technologies. In fact, tandem architectures allow devices to significantly broaden their overall absorbance spectra providing higher conversion efficiencies compared to individual cells. However, up to now, this has not been true for DSCs where record performances have been always obtained with single cells. This is mainly due to the difficulty of realizing integrated tandem DSC configurations where interlayer losses are minimized. Thus, we propose a new tandem architecture that overcomes the limitation presented so far by tandem DSCs, reporting an efficiency of 6.66% with wide room for improvement. Experimental results are corroborated with two-dimensional device simulations which allow us to understand the working mechanisms and to define optimization routes for this novel architecture. This work opens the way for further optimization of DSC technology, well beyond the actual limits, and also discloses ideas for new possible structures in the related fields of TiO2 tandem catalysts which are important for the realization of solar fuels and electrolyte based devices.

Graphical abstract: Integrated tandem dye solar cells

Article information

Article type
Paper
Submitted
14 May 2013
Accepted
20 Aug 2013
First published
27 Aug 2013

RSC Adv., 2013,3, 20273-20280

Integrated tandem dye solar cells

R. Tagliaferro, D. Gentilini, S. Mastroianni, A. Zampetti, A. Gagliardi, T. M. Brown, A. Reale and A. Di Carlo, RSC Adv., 2013, 3, 20273 DOI: 10.1039/C3RA43380C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements