Issue 3, 2013

Thienoisoindigo-based low-band gap polymers for organic electronic devices

Abstract

We synthesized a series of new low-band gap donor–acceptor copolymers containing 4,4′-bis(alkyl)-[6,6′-bithieno[3,2-b]pyrrolylidene]-5,5′(4H,4′H)-dione. This acceptor unit, so-called dithienoketopyrrole (DTKP), is an analogue of isoindigo, the phenyl rings of which are replaced by thiophenes. Donor moieties such as benzodithiophene, cyclopentadithiophene, fluorene, and dithienothiophene are polymerized with DTKP in an alternating fashion by Stille or Suzuki–Miyaura coupling methods. Exceedingly low-band gaps (Eg = 1.0–1.6 eV) were achieved in these copolymers through internal charge transfer interactions between the donor and acceptor moieties. The structural, photophysical, and electrochemical properties of the resultant copolymers were characterized, and field-effect transistor (FET) mobilities were measured. The copolymers showed electronic absorption spectra extending to the near infrared region (600–1400 nm) with absorption maxima at 745–971 nm, along with a low-lying LUMO of −3.8 eV. Density functional theory (DFT) calculation indicated high planarity for the copolymer backbone when compared to that of its phenyl-isoindigo counterparts. FET hole mobilities on the order of 10−4 to 10−3 cm2 V−1 s−1 were obtained, demonstrating a feasibility to use them in organic photovoltaic cells.

Graphical abstract: Thienoisoindigo-based low-band gap polymers for organic electronic devices

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2012
Accepted
10 Sep 2012
First published
12 Sep 2012

Polym. Chem., 2013,4, 484-494

Thienoisoindigo-based low-band gap polymers for organic electronic devices

Y. Koizumi, M. Ide, A. Saeki, C. Vijayakumar, B. Balan, M. Kawamoto and S. Seki, Polym. Chem., 2013, 4, 484 DOI: 10.1039/C2PY20699D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements