Jump to main content
Jump to site search

Issue 12, 2013
Previous Article Next Article

Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties

Author affiliations

Abstract

Step-growth polymerization of ditertiary phosphines with dibromoalkanes enabled the synthesis of novel phosphonium ionenes. In situ FTIR spectroscopy monitored the increase in absorbance as a function of time at 1116 cm−1, which corresponded to the polymeric P+–Ph stretch. Aqueous size-exclusion chromatography (SEC) provided absolute molecular weights and confirmed expected molecular weight growth for difunctional, step-growth polymerization. Phosphonium ionenes exhibited improved thermal and base stability compared to ammonium ionenes, which was attributed to the propensity of the ammonium cation towards Hofmann elimination. Melt rheology examined phosphonium ionene viscous flow and the influence of charge density on melt viscosity as a function of shear rate and temperature. Time–temperature superposition (TTS) resulted in both master curves and pseudomaster curves depending on phosphonium ionene composition. Two primary relaxations occurred: (1) onset of long-range segmental motion at Tg, and (2) relaxation attributed to electrostatic interactions. Higher charge densities shifted these two relaxations to longer time scales and increased flow activation energies. Phosphonium ionenes also readily bound pDNA effectively (± ratios of 1), and base stability suggested applications in energy generation.

Graphical abstract: Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Mar 2013, accepted on 19 Apr 2013 and first published on 23 Apr 2013


Article type: Paper
DOI: 10.1039/C3PY00365E
Citation: Polym. Chem., 2013,4, 3582-3590
  •   Request permissions

    Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties

    S. T. Hemp, M. Zhang, M. Tamami and T. E. Long, Polym. Chem., 2013, 4, 3582
    DOI: 10.1039/C3PY00365E

Search articles by author

Spotlight

Advertisements