Issue 2, 2013

Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid

Abstract

Poly(arylene ether sulfone)-based ionomers with sulfonate groups of varying acidity (perfluoroalkyl sulfonate, aryl sulfonate and alkyl sulfonate) were synthesized via borylation of aromatic C–H bonds and Suzuki coupling with sulfonated phenyl bromides. Properties of the ionomers, such as thermal stability, water uptake, ion exchange capacity, morphology and proton conductivity, were analyzed with respect to the effect of the sulfonate group. Superacidic fluoroalkyl sulfonated ionomers displayed much higher conductivity at low relative humidity than less acidic aryl and alkyl sulfonated ionomers in spite of their lower ion exchange capacities. The water uptake of the membranes correlated with their IEC, regardless of the acid group identity. The membranes with fluoroalkyl and alkyl sulfonate groups had similar hydration numbers as a function of RH, but the hydration number of the aromatic sulfonate sample was greater than the other polymers. Ionic domain structure analysis by atomic force microscopy, transmission electron microscopy and small-angle X-ray scattering revealed that all of the aromatic ionomers in this study had a small, disorganized phase structure. These results demonstrate that the primary influence on the proton conductivity of these randomly sulfonated copolymers is the acid strength while the nanoscale domain structure plays a secondary role in the low RH proton transport.

Graphical abstract: Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid

Article information

Article type
Paper
Submitted
21 Aug 2012
Accepted
17 Sep 2012
First published
18 Sep 2012

Polym. Chem., 2013,4, 272-281

Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid

Y. Chang, G. F. Brunello, J. Fuller, M. L. Disabb-Miller, M. E. Hawley, Y. S. Kim, M. A. Hickner, S. S. Jang and C. Bae, Polym. Chem., 2013, 4, 272 DOI: 10.1039/C2PY20666H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements