Issue 2, 2014

Chiral recognition for the complexation dynamics of β-cyclodextrin with the enantiomers of 2-naphthyl-1-ethanol

Abstract

The focus of this study is to understand the origin of the chiral recognition for a host–guest system containing complexes with different stoichiometries. Each enantiomer of 2-naphthyl-1-ethanol forms two different 1 : 1 complexes with β-cyclodextrin, leading to the formation of three different 2 : 2 complexes. One of these 2 : 2 complexes leads to excimer emission of the guest. Fluorescence studies were employed to determine the binding isotherms for the 1 : 1 and 2 : 2 complexes. No chiral discrimination was directly observed for the formation of the 1 : 1 complexes, while higher equilibrium constants (29% from binding isotherms and 40% from kinetic studies) were observed for the formation of the 2 : 2 complexes with (R)-2-naphthyl-1-ethanol when compared to the formation of the 2 : 2 complexes formed from (S)-2-naphthyl-1-ethanol. The relaxation kinetics was studied using stopped-flow experiments. The formation of the 2 : 2 complexes was followed by detecting the excimer emission from one of the 2 : 2 complexes. The relaxation kinetics was faster for (S)-2-naphthyl-1-ethanol, where a higher dissociation rate constant, by 47%, was observed, suggesting that the chiral discrimination occurs because the interaction between two cyclodextrins is more favorable for the complexes containing (R)-2-naphthyl-1-ethanol when compared to (S)-2-naphthyl-1-ethanol. The same overall equilibrium constants were observed for the 1 : 1 complexes with both enantiomers showing that at a given cyclodextrin concentration the sum of the two types of 1 : 1 complexes is the same for both enantiomers. However, analysis of the binding isotherms indicates that the ratio between the two different 1 : 1 complexes for each enantiomer was different for (R)- and (S)-2-naphthyl-1-ethanol.

Graphical abstract: Chiral recognition for the complexation dynamics of β-cyclodextrin with the enantiomers of 2-naphthyl-1-ethanol

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2013
Accepted
04 Dec 2013
First published
05 Dec 2013
This article is Open Access
Creative Commons BY-NC license

Photochem. Photobiol. Sci., 2014,13, 358-369

Chiral recognition for the complexation dynamics of β-cyclodextrin with the enantiomers of 2-naphthyl-1-ethanol

H. Tang, A. S. M. Sutherland, L. M. Osusky, Y. Li, J. F. Holzwarth and C. Bohne, Photochem. Photobiol. Sci., 2014, 13, 358 DOI: 10.1039/C3PP50298H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements