Issue 15, 2013

Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids

Abstract

The nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride was investigated using water and a range of alcoholic nucleophiles in ionic liquid solvents. The reactivity patterns across the nucleophiles examined could be attributed to steric factors, which mediated the relative nucleophilicities. Reducing the hydrogen-bond acidity of the ionic liquid cation was found to generally increase the rate of reaction, however, the magnitude of this rate effect could be influenced by the steric bulk of the nucleophile and the structural heterogeneity of the ionic liquid. Preferential solvation phenomena in binary mixtures of ionic liquids were examined and suggest that the mechanism behind the hydrogen-bond solvation phenomenon arises from direct cation-mediated, rather than indirect anion-mediated, effects.

Graphical abstract: Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2013
Accepted
21 Feb 2013
First published
22 Feb 2013

Org. Biomol. Chem., 2013,11, 2534-2542

Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids

C. C. Weber, A. F. Masters and T. Maschmeyer, Org. Biomol. Chem., 2013, 11, 2534 DOI: 10.1039/C3OB40105G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements