Jump to main content
Jump to site search

Issue 30, 2013
Previous Article Next Article

Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(II) ion and their FRET mediated signaling

Author affiliations

Abstract

The metal ion induced absorption and emission signaling pattern of rhodamine coupled bis-(aminopropyl)-piperazine (1–3) and (aminoethyl)-piperazine (4) based probes evaluated in MeCN as well as in an MeCN–H2O binary mixture medium revealed that these probes exhibit optical signaling perturbations to a varying extent in MeCN, however, their complexation induced signaling could be tuned selectively towards Hg(II) in the presence of an aqueous component in the solvent medium where competitive interactions such as metal–probe interactions and hydration of metal ions play the determining factor to induce aqueous promoted Hg(II) selectivity. Attachment of another fluorophore (anthracene and nitrobenzofurazan moieties in 2 and 3 respectively) at the other end of the rhodamine coupled bis-(aminopropyl)-piperazine receptor enabled these probes to facilitate a complexation induced fluorescence resonance energy transfer (FRET) from the excited fluorophore to the ring-opened rhodamine along with contributions through operative PET inhibition and rhodamine delactonization processes. The enhancement in absorption transition of these probes at ∼557 nm upon selective Hg(II)-complexation and consequent colourless to pink colour change in the solution imply a chromogenic signaling pattern whereas simultaneous fluorescence amplification and/or FRET initiation lead to fluorogenic signaling to facilitate detection at lower concentration. The Hg(II)-selective photo-physical spectral modulation in the presence of other competitive metal ions, and their reversible dual channel signaling pattern under the action of counter anions or chelating agents such as EDTA or ethylenediamine establish the potential of these probes for highly selective, sensitive and reversible ‘OFF–ON–OFF’ detection of Hg(II). The complexation induced optical signaling pattern of probes with a propyl-linker in their receptor (1–3) in comparison with that of 4 consisting of an ethyl-spacer indicate that signaling probe design with a substituted ‘aminoalkyl-lactonized-rhodamine’ subunit preferentially exhibit Hg(II) selective and sensitive dual mode signaling in an organic–aqueous mixture medium irrespective of carbon-length of the flexible alkyl spacer.

Graphical abstract: Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(ii) ion and their FRET mediated signaling

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Apr 2013, accepted on 29 May 2013 and first published on 30 May 2013


Article type: Paper
DOI: 10.1039/C3OB40648B
Citation: Org. Biomol. Chem., 2013,11, 4975-4992
  •   Request permissions

    Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(II) ion and their FRET mediated signaling

    B. Biswal and B. Bag, Org. Biomol. Chem., 2013, 11, 4975
    DOI: 10.1039/C3OB40648B

Search articles by author

Spotlight

Advertisements