Issue 4, 2013

Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity

Abstract

Stable Cu2O nanocrystals of around 3 nm were uniformly and densely grown on functionalized graphene sheets (FGS), which act as molecular templates instead of surfactants for controlled nucleation; the distribution density of nanocrystals can be easily controlled by FGS with different C/O ratios. The nanocomposite displays improved stability of the crystalline phase in wet air, which is attributed to finite-size effects that the high-symmetry crystalline phase is to be more stable at smaller size. Meanwhile, we conjecture that the oxygen adsorbed on the interfacial surface prefers to extract electrons from FGS, thus the interfacial bonding also makes a contribution in alleviating the process of corrosion to some extent. More importantly, the Cu2O–FGS nanocomposite based sensor realizes room temperature sensing to H2S with fantastic sensitivity (11%); even at the exposed concentration of 5 ppb, the relative resistance changes show good linearity with the logarithm of the concentration. The enhancement of sensitivity is attributed to the synergistic effect of Cu2O and FGS; on the one hand, surfactant-free capped Cu2O nanocrystals display higher surface activity to adsorb gas molecules, and on the other hand, FGS acting as conducting network presents greater electron transfer efficiency. These observations show that the Cu2O–FGS nanocomposite based sensors have potential applications for monitoring air pollution at room temperature with low cost and power consumption.

Graphical abstract: Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2012
Accepted
10 Dec 2012
First published
14 Dec 2012

Nanoscale, 2013,5, 1564-1569

Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity

L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang and W. Chen, Nanoscale, 2013, 5, 1564 DOI: 10.1039/C2NR33164K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements