Issue 8, 2013

A method for non-invasive full-field imaging and quantification of chemical species

Abstract

We present a novel method for full-field scalar visualization and quantification of species concentration fields. We term this method species-altered fluorescence imaging (SAFI). The method employs electrically neutral fluorescent dyes whose quantum yields are selectively quenched or enhanced by species of interest. SAFI enables simultaneous imaging of material interfaces and provides non-invasive, scalar-field quantitation of two-dimensional species concentration fields. We describe criteria for choosing SAFI dyes and tabulate 35 promising SAFI dyes and their relevant properties. Next, we describe species concentration quantification with SAFI via Stern–Volmer quenching and discuss the sensitivity and resolution of our method. We demonstrate this method with two dyes, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) and 10-(3-sulfopropyl)acridinium betaine (SAB). We demonstrate our method in full-field visualization of several challenging electrokinetic flows: isotachophoresis (ITP) in both cationic and anionic modes, and in a convective electrokinetic instability (EKI) flow. Through these experiments we collectively quantify ion concentration shock velocities, simultaneously measure concentrations of five species, and quantify the development of an unsteady, chaotic, 2D flow.

Graphical abstract: A method for non-invasive full-field imaging and quantification of chemical species

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2012
Accepted
29 Jan 2013
First published
30 Jan 2013

Lab Chip, 2013,13, 1632-1643

A method for non-invasive full-field imaging and quantification of chemical species

V. Shkolnikov and J. G. Santiago, Lab Chip, 2013, 13, 1632 DOI: 10.1039/C3LC41293H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements