Issue 12, 2013

Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions

Abstract

Advances in modern genomic research depend heavily on applications of various devices for automated high- or ultra-throughput arrays. Micro- and nanofluidics offer possibilities for miniaturization and integration of many different arrays onto a single device. Therefore, such devices are becoming a platform of choice for developing analytical instruments for modern biotechnology. This paper presents an implementation of a bead-based microfluidic platform for fully automated and programmable DNA microarrays. The devices are designed to work under isothermal conditions as DNA immobilization and hybridization transfer are performed under steady temperature using reversible pH alterations of reaction solutions. This offers the possibility for integration of more selection modules onto a single chip compared to maintaining a temperature gradient. This novel technology allows integration of many modules on a single reusable chip reducing the application cost. The method takes advantage of demonstrated high-speed DNA hybridization kinetics and denaturation on beads under flow conditions, high-fidelity of DNA hybridization, and small sample volumes are needed. The microfluidic devices are applied for a single nucleotide polymorphism analysis and DNA sequencing by synthesis without the need for fluorescent removal step. Apart from that, the microfluidic platform presented is applicable to many areas of modern biotechnology, including biosensor devices, DNA hybridization microarrays, molecular computation, on-chip nucleic acid selection, high-throughput screening of chemical libraries for drug discovery.

Graphical abstract: Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2013
Accepted
05 Apr 2013
First published
05 Apr 2013

Lab Chip, 2013,13, 2370-2380

Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions

R. Penchovsky, Lab Chip, 2013, 13, 2370 DOI: 10.1039/C3LC50208B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements