Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 7, 2013
Previous Article Next Article

Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird

Author affiliations

Abstract

Charles Darwin acknowledged the importance of colour in the natural selection of bird plumage. Colour can indicate age, sex, and diet, as well as play roles in camouflage, mating and establishing territories. Feather and integument colour depend on both chemical and structural characteristics and so melanosome structure and trace metal biomarkers can be used to infer colour and pigment patterns in a range of extant and fossil organisms. In this study, three key specimens of Archaeopteryx were subjected to non-destructive chemical analysis in order to investigate the potential preservation of original pigmentation in early fossil feathers. Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) maps are combined with sulphur X-ray Absorption Near Edge Structure (XANES) spectroscopy to provide the first map of organic sulphur distribution within whole fossils, and demonstrate that organically derived endogenous compounds are present. The distribution of trace-metals and organic sulphur in Archaeopteryx strongly suggests that remnants of endogenous eumelanin pigment have been preserved in the feathers of this iconic fossil. These distributions are used here to predict the complete feather pigment pattern and show that the distal tips and outer vanes of feathers were more heavily pigmented than inner vanes, contrary to recent studies. This pigment adaptation might have impacted upon the structural and mechanical properties of early feathers, steering plumage evolution in Archaeopteryx and other feathered theropod dinosaurs.

Graphical abstract: Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 06 Mar 2013, accepted on 31 May 2013 and first published on 31 May 2013


Article type: Paper
DOI: 10.1039/C3JA50077B
Citation: J. Anal. At. Spectrom., 2013,28, 1024-1030
  • Open access:
  •   Request permissions

    Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird

    Phillip. L. Manning, N. P. Edwards, R. A. Wogelius, U. Bergmann, H. E. Barden, P. L. Larson, D. Schwarz-Wings, V. M. Egerton, D. Sokaras, R. A. Mori and W. I. Sellers, J. Anal. At. Spectrom., 2013, 28, 1024
    DOI: 10.1039/C3JA50077B

Search articles by author