Jump to main content
Jump to site search

Issue 12, 2013
Previous Article Next Article

Postulates on electromagnetic activity in biological systems and cancer

Author affiliations

Abstract

A framework of postulates is formulated to define the existence, nature, and function of a coherent state far from thermodynamic equilibrium in biological systems as an essential condition for the existence of life. This state is excited and sustained by energy supply. Mitochondria producing small packets of energy in the form of adenosine and guanosine triphosphate and strong static electric field around them form boundary elements between biochemical–genetic and physical processes. The transformation mechanism of chemical energy into useful work for biological needs and the excitation of the coherent state far from thermodynamic equilibrium are fundamental problems. The exceptional electrical polarity of biological objects and long-range interactions suggest a basic role of the endogenous electromagnetic field generated by living cells. The formulated postulates encompass generation, properties and function of the electromagnetic field connected with biological activity and its pathological deviations. Excited longitudinal polar oscillations in microtubules in eukaryotic cells generate the endogenous electromagnetic field. The metabolic activity of mitochondria connected with water ordering forms conditions for excitation. The electrodynamic field plays an important role in the establishment of coherence, directional transport, organization of morphological structures, interactions, information transfer, and brain activity. An overview of experimental results and physical models supporting the postulates is included. The existence of the endogenous biological electromagnetic field, its generation by microtubules and supporting effects produced by mitochondria have a reasonable experimental foundation. Cancer transformation is a pathological reduction of the coherent energy state far from thermodynamic equilibrium. Malignancy, i.e. local invasion and metastasis, is a direct consequence of mitochondrial dysfunction, disturbed microtubule polar oscillations and the generated electromagnetic field.

Graphical abstract: Postulates on electromagnetic activity in biological systems and cancer

Back to tab navigation

Publication details

The article was received on 08 Aug 2013, accepted on 13 Oct 2013 and first published on 14 Oct 2013


Article type: Paper
DOI: 10.1039/C3IB40166A
Citation: Integr. Biol., 2013,5, 1439-1446
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Postulates on electromagnetic activity in biological systems and cancer

    J. Pokorný, J. Pokorný and J. Kobilková, Integr. Biol., 2013, 5, 1439
    DOI: 10.1039/C3IB40166A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements