Jump to main content
Jump to site search

Issue 1, 2013
Previous Article Next Article

Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake

Author affiliations

Abstract

Vaults are naturally-occurring ribonucleoprotein particles found in nearly all eukaryotic cells. They were named for their morphological resemblance to the vaulted ceilings of gothic cathedrals. These ubiquitous nanoparticles are quite abundant with 104–106 copies found in the cytoplasm depending on cell type. The structural shell of the particle can self-assemble from 78 copies of a single protein, the major vault protein. This finding has allowed vaults to be bioengineered, resulting in a variety of new functions and capabilities directed toward overcoming many limitations posed by current gene and drug delivery systems. In this study, we demonstrate that recombinant vaults, with the addition of a cell penetration peptide, TAT, can be rapidly delivered to cells in vitro with significantly elevated binding and uptake efficiency. This TAT-vault nanoparticle could be a valuable tool for improving the retention and penetration of therapeutic drugs at tumor sites.

Graphical abstract: Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake

Back to tab navigation

Publication details

The article was received on 14 May 2012, accepted on 19 Jun 2012 and first published on 12 Jul 2012


Article type: Paper
DOI: 10.1039/C2IB20119D
Citation: Integr. Biol., 2013,5, 151-158
  •   Request permissions

    Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake

    J. Yang, A. Srinivasan, Y. Sun, J. Mrazek, Z. Shu, V. A. Kickhoefer and L. H. Rome, Integr. Biol., 2013, 5, 151
    DOI: 10.1039/C2IB20119D

Search articles by author

Spotlight

Advertisements