Jump to main content
Jump to site search

Issue 20, 2013
Previous Article Next Article

Computational study of the hydrodefluorination of fluoroarenes at [Ru(NHC)(PR3)2(CO)(H)2]: predicted scope and regioselectivities

Author affiliations

Abstract

Density functional theory calculations have been employed to investigate the scope and selectivity of the hydrodefluorination (HDF) of fluoroarenes, C6F6−nHn (n = 0–5), at catalysts of the type [Ru(NHC)(PR3)2(CO)(H)2]. Based on our previous study (Angew. Chem., Int. Ed., 2011, 50, 2783) two mechanisms featuring the nucleophilic attack of a hydride ligand at a fluoroarene substrate were considered: (i) a concerted process with Ru–H/C–F exchange occurring in one step; and (ii) a stepwise pathway in which the rate-determining transition state involves formation of HF and a Ru-σ-fluoroaryl complex. The nature of the metal coordination environment and, in particular, the NHC ligand was found to play an important role in both promoting the HDF reaction and determining the regioselectivity of this process. Thus for the reaction of C6F5H, the full experimental system (NHC = IMes, R = Ph) promotes HDF through (i) more facile initial PR3/fluoroarene substitution and (ii) the ability of the NHC N-aryl substituents to stabilise the key C–F bond breaking transition state through F⋯HC interactions. This latter effect is maximised along the lower energy stepwise pathway when an ortho-H substituent is present and this accounts for the ortho-selectivity seen in the reaction of C6F5H to give 1,2,3,4-C6F4H2. Computed C–F bond dissociation energies (BDEs) for C6F6−nHn substrates show a general increase with larger n and are most sensitive to the number of ortho-F substituents present. However, HDF is always computed to remain significantly exothermic when a silane such as Me3SiH is included as terminal reductant. Computed barriers to HDF also generally increase with greater n, and for the concerted pathway a good correlation between C–F BDE and barrier height is seen. The two mechanisms were found to have complementary regioselectivities. For the concerted pathway the reaction is directed to sites with two ortho-F substituents, as these have the weakest C–F bonds. In contrast, reaction along the stepwise pathway is directed to sites with only one ortho-F substituent, due to difficulties in accommodating ortho-F substituents in the C–F bond cleavage transition state. Calculations predict that 1,2,3,5-C6F4H2 and 1,2,3,4-C6F4H2 are viable candidates for HDF at [Ru(IMes)(PPh3)2(CO)(H)2] and that this would proceed selectively to give 1,2,4-C6F3H3 and 1,2,3-C6F3H3, respectively.

Graphical abstract: Computational study of the hydrodefluorination of fluoroarenes at [Ru(NHC)(PR3)2(CO)(H)2]: predicted scope and regioselectivities

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Dec 2012, accepted on 18 Jan 2013 and first published on 11 Feb 2013


Article type: Paper
DOI: 10.1039/C3DT32962C
Citation: Dalton Trans., 2013,42, 7386-7395
  • Open access: Creative Commons BY license
  •   Request permissions

    Computational study of the hydrodefluorination of fluoroarenes at [Ru(NHC)(PR3)2(CO)(H)2]: predicted scope and regioselectivities

    S. A. Macgregor, D. McKay, J. A. Panetier and M. K. Whittlesey, Dalton Trans., 2013, 42, 7386
    DOI: 10.1039/C3DT32962C

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements