Issue 35, 2013

Anomalous reactivity of supported V2O5nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor

Abstract

The oxidative dehydrogenation (ODH) of propane to propylene by supported vanadia catalysts has received much attention in recent years, but different reactivity trends have been reported for this catalytic reaction system. In the present investigation, the origin of these differing trends are investigated with synthesis of supported V/SiO2, V/TiO2, and V/Al2O3 catalysts prepared with three different vanadium oxide precursors (2-propanol/vanadyl triisopropoxide [VO(O-Pri)3] (VTI), oxalic acid/ammonium metavanadate [NH4VO3] (AMV), and toluene/vanadyl acetylacetonate [VO(C5H7O2)2] (VAA)) in order to elucidate the influence of the precursor on supported vanadia phase and propane ODH activity. In situ Raman spectroscopy revealed that the choice of vanadium precursor does not affect the dispersion of the supported vanadium oxide phase below 4 V nm−2 (0.5 monolayer coverage), where only isolated and oligomeric surface VO4 species are present, and only the AMV precursor favors crystalline V2O5 nanoparticle (NP) formation below monolayer coverage (8 V nm−2). The propane ODH specific reactivity trend demonstrated that there is no significant difference in TOF for the isolated and oligomeric surface VO4 sites. Surprisingly, V2O5 NPs in the ∼1–2 nm range exhibit anomalously high propane ODH TOF values for the supported vanadia catalysts. This was found for all supported vanadium oxide catalysts examined. This comparative study with different V-precursors and synthesis methods and oxide supports finally resolves the debate in the catalysis literature about the dependence of TOF on the surface vanadium density that is related to the unusually high reactivity of small V2O5 NPs.

Graphical abstract: Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor

Article information

Article type
Paper
Submitted
05 Mar 2013
Accepted
25 Apr 2013
First published
08 May 2013

Dalton Trans., 2013,42, 12644-12653

Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor

C. A. Carrero, C. J. Keturakis, A. Orrego, R. Schomäcker and I. E. Wachs, Dalton Trans., 2013, 42, 12644 DOI: 10.1039/C3DT50611H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements